悟空视频

    在线播放云盘网盘BT下载影视图书

    PyTorch 2.0深度学习从零开始学 - 图书

    2023科学技术·工业技术
    导演:王晓华
    PyTorch是一个开源的机器学习框架,它提供了动态计算图的支持,让用户能够自定义和训练自己的神经网络,目前是机器学习领域中****的框架之一。本书基于PyTorch 2.0,详细介绍深度学习的基本理论、算法和应用案例,配套示例源代码、PPT课件。 《PyTorch?2.0深度学习从零开始学》共分15章,内容包括PyTorch概述、开发环境搭建、基于PyTorch的MNIST分类实战、深度学习理论基础、MNIST分类实战、数据处理与模型可视化、基于PyTorch卷积层的分类实战、PyTorch数据处理与模型可视化、实战ResNet卷积网络模型、有趣的Word Embedding、基于循环神经网络的中文情感分类实战、自然语言处理的编码器、站在巨人肩膀上的预训练模型BERT、自然语言处理的解码器、基于PyTorch的强化学习实战、基于MFCC的语音唤醒实战、基于PyTorch的人脸识别实战。
    PyTorch 2.0深度学习从零开始学
    图书

    Python深度学习从零开始学 - 图书

    2022计算机·编程设计
    导演:宋立桓
    本书立足实践,以通俗易懂的方式详细介绍深度学习的基础理论以及相关的必要知识,同时以实际动手操作的方式来引导读者入门人工智能深度学习。本书的读者只需具备Python语言基础知识,不需要有数学基础或者AI基础,按照本书的内容循序渐进地学习,即可快速上手深度学习。本书配套示例源码、PPT课件、数据集、开发环境与答疑服务。本书共分13章,主要内容包括人工智能、机器学习和深度学习之间的关系、深度学习的环境搭建、深度学习的原理、深度学习框架TensorFlow和Keras、卷积神经网络相关知识、图像识别、情感分析、迁移学习、人脸识别、图像风格迁移、生成对抗网络等内容。本书从最简单的常识出发来切入AI领域,打造平滑和兴奋的学习体验。
    Python深度学习从零开始学
    搜索《Python深度学习从零开始学》
    图书

    从零开始学TensorFlow2.0 - 图书

    2020计算机·理论知识
    导演:赵铭 欧铁军编著
    本书从TensorFlow 2.0的基础知识讲起,深入介绍TensorFlow 2.0的进阶实战,并配合项目实战案例,重点介绍使用TensorFlow 2.0的新特性进行机器学习的方法,使读者能够系统地学习机器学习的相关知识,并对TensorFlow 2.0的新特性有更深入的理解。本书共14章,主要介绍机器学习、TensorFlow 2.0基础、张量、数据层、CNN等内容,中间还穿插了机器学习中常见的图形识别、文本处理和对抗训练等实例,以帮助读者理解TensorFlow 2.0。本书着重介绍了在TensorFlow 2.0中使用Keras的方法,Keras是TensorFlow 2.0中的重点概念,十分有必要对其进行学习。本书内容通俗易懂、案例丰富、实用性强,特别适用于TensorFlow 2.0的入门者和进阶者,以及有志从事机器学习的爱好者,本书还适合用作相关机构的培训教材。
    从零开始学TensorFlow2.0
    搜索《从零开始学TensorFlow2.0》
    图书

    从零开始学烘焙2 - 图书

    2012
    导演:文怡
    《从零开始学烘焙2》精选65简单易学的烘焙品种,包括饼干、小蛋糕等。 文怡,新浪美食元老博主,其美食博客“文怡心厨房”已达到1亿4000多万的点击率,已出版的文怡“心”厨房系列美食图书在同类书中脱颖而出。《从零开始学烘焙2》是文怡和妍色的共同之作,秉承了作者细致、活泼的风格,带您用一台烤箱,几个鸡蛋,一点面粉,一块黄油,变幻出带着暖暖心意的蛋糕、饼干、面包……
    从零开始学烘焙2
    搜索《从零开始学烘焙2》
    图书

    PyTorch深度学习实战 - 图书

    2022计算机·数据库
    导演:伊莱·史蒂文斯 卢卡·安蒂加 托马斯·菲曼
    虽然很多深度学习工具都使用Python,但PyTorch库是真正具备Python风格的。对于任何了解NumPy和scikit-learn等工具的人来说,上手PyTorch轻而易举。PyTorch在不牺牲高级特性的情况下简化了深度学习,它非常适合构建快速模型,并且可以平稳地从个人应用扩展到企业级应用。由于像苹果、Facebook和摩根大通这样的公司都使用PyTorch,所以当你掌握了PyTorth,就会拥有更多的职业选择。本书是教你使用PyTorch创建神经网络和深度学习系统的实用指南。它帮助读者快速从零开始构建一个真实示例:肿瘤图像分类器。在此过程中,它涵盖了整个深度学习管道的关键实践,包括PyTorch张量API、用Python加载数据、监控训练以及将结果进行可视化展示。本书主要内容:(1)训练深层神经网络;(2)实现模块和损失函数;(3)使用PyTorchHub预先训练的模型;(4)探索在JupyterNotebooks中编写示例代码。
    PyTorch深度学习实战
    搜索《PyTorch深度学习实战》
    图书

    PyTorch深度学习入门 - 图书

    2019
    导演:曾芃壹
    本书用浅显易懂的语言,图文并貌地讲解了深度学习的基础知识,从如何挑选硬件到神经网络的初步搭建,再到实现图片识别、文本翻译、强化学习、生成对抗网络等多个目前最流行的深度学习应用。书中基于目前流行的PyTorch框架,运用Python语言实现了各种深度学习的应用程序,让理论和实践紧密结合。
    PyTorch深度学习入门
    搜索《PyTorch深度学习入门》
    图书

    Python深度学习:基于PyTorch - 图书

    2022计算机·编程设计
    导演:吴茂贵 郁明敏 杨本法 李涛 张粤磊
    内容介绍 这是一本基于*新的Python和PyTorch版本的深度学习著作,旨在帮助读者低门槛进入深度学习领域,轻松速掌握深度学习的理论知识和实践方法,快速实现从入门到进阶的转变。 本书是多位人工智能技术专家和大数据技术专家多年工作经验的结晶,从工具使用、技术原理、算法设计、案例实现等多个维度对深度学习进行了系统的讲解。内容选择上,广泛涉猎、重点突出、注重实战;内容安排上,实例切入、由浅入深、循序渐进;表达形式上,深度抽象、化繁为简、用图说话。 本书共16章,分为三部分: 第壹部分(第1~4章) PyTorch基础 首先讲解了机器学习和数据科学中必然会用到的工具Numpy的使用,然后从多个角度讲解了Pytorch的必备基础知识,*后详细讲解了Pytorch的神经网络工具箱和数据处理工具箱。 第二部分(第5~8章) 深度学习基础 这部分从技术原理、算法设计、实践技巧等维度讲解了机器学习和深度学习的经典理理论、算法以及提升深度学习模型性能的多种技巧,涵盖视觉处理、NLP和生成式深度学习等主题。 第三部分(第9~16章) 深度学习实践 这部分从工程实践的角度讲解了深度学习的工程方法和在一些热门领域的实践方案,具体包括人脸识别、图像修复、图像增强、风格迁移、中英文互译、生成式对抗网络、对抗攻击、强化学习、深度强化学习等内容。
    Python深度学习:基于PyTorch
    搜索《Python深度学习:基于PyTorch》
    图书

    PyTorch深度学习简明实战 - 图书

    2022计算机·编程设计
    导演:日月光华
    本书针对深度学习及开源框架——PyTorch,采用简明的语言进行知识的讲解,注重实战。全书分为4篇,共19章。深度学习基础篇(第1章~第6章)包括PyTorch简介与安装、机器学习基础与线性回归、张量与数据类型、分类问题与多层感知器、多层感知器模型与模型训练、梯度下降法、反向传播算法与内置优化器。计算机视觉篇(第7章~第14章)包括计算机视觉与卷积神经网络、卷积入门实例、图像读取与模型保存、多分类问题与卷积模型的优化、迁移学习与数据增强、经典网络模型与特征提取、图像定位基础、图像语义分割。自然语言处理和序列篇(第15章~第17章)包括文本分类与词嵌入、循环神经网络与一维卷积神经网络、序列预测实例。生成对抗网络和目标检测篇(第18章~第19章)包括生成对抗网络、目标检测。
    PyTorch深度学习简明实战
    搜索《PyTorch深度学习简明实战》
    图书

    PyTorch深度学习应用实战 - 图书

    2023科学技术·工业技术
    导演:陈昭明 洪锦魁
    本书基于PyTorch,介绍日益普及的演算法与相关套件的使用,例如YOLO(物件侦测)、GAN(生成对抗网路)/DeepFake( 深度伪造)、OCR(辨识图像中的文字)、脸部辨识、BERT/Transformer 、聊天机器人 (ChatBot)、强化学习 (Reinforcement Learning)、自动语音办识 (ASR)、知识图谱 (Knowled ge Graph) 等。PyTorch是近年来最流行的深度学习框架,本书采用新的思路来带初学者来了解和使用PyTorch框架,同时带你入门深度 学习领域。本书通过独特的编排,保证读者在阅读的过程中,可以获得快速的反馈,进而激发学习的动力。
    PyTorch深度学习应用实战
    搜索《PyTorch深度学习应用实战》
    图书

    深度学习入门之PyTorch - 图书

    导演:廖星宇
    《深度学习入门之PyTorch》深度学习如今已经成为科技领域最炙手可热的技术,在《深度学习入门之PyTorch》中,我们将帮助你入门深度学习。《深度学习入门之PyTorch》将从机器学习和深度学习的基础理论入手,从零开始学习 PyTorch,了解 PyTorch 基础,以及如何用 PyTorch 框架搭建模型。通过阅读《深度学习入门之PyTorch》,你将学到机器学习中的线性回归和 Logistic 回归、深度学习的优化方法、多层全连接神经网络、卷积神经网络、循环神经网络,以及生成对抗网络,最后通过实战了解深度学习前沿的研究成果,以及 PyTorch 在实际项目中的应用。《深度学习入门之PyTorch》将理论和代码相结合,帮助读者更好地入门深度学习,适合任何对深度学习感兴趣的人阅读。
    深度学习入门之PyTorch
    搜索《深度学习入门之PyTorch》
    图书
    加载中...